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HYMPS

Numerical Techniques

Henry P, Decell, Jr.

General University of Houston

In the digital calculations that drive the classification portion of the
Hybrid Fattern Recognition System (HYMPS) there are three items that warrant
"tuning'". They are:

I. Matrix Inversion
II. Det calculations & Singularity

ITI. Covariance Factorization

Although I,TI,III are essentially viewed separately in the HYMPS writeup,

they are, in fact, related and some improvement in numerical accuracy and

computational speed can be gained by simply deleting redundant matrix manulipations.

Introduction

In what follows we will show that it is more economical to first factor
the covariance matrix and, by so doing, delete the matrix inversion MINV,
Necessary Det calculations can, moreover, be more easily realized by use of
simple theoretical facts about the factorization.

Basically the reasons for doing the factorization first are:

1. MINV (or any other inversion routine, for that matter) can be

eliminated in the current calculations

2. When MINV is deleted, errors in computation will be directly
related to the factor routine and not to a combination of inversion

factorization (unknown) errors.
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3. All required information for classification is contained in the

factorization.

4. The upper triangular form required in the analog classification

scheme is preserved in these operations.

5. The Bk matrix calculations in their present form are no longer

required.
Factorization

We recommend that the covariance matrix :E. be fadtored into "upper

triangular form" i.e.
z = AAT where

A is a matrix with all zeros below the main diagonal (this is now being done
to i-l in HYMPS, after applying MINV to z). The results of this
factorization will be as good as those obtained in factoring.i:fl since we
propose that the same factorization routine be utilized. In fact, the conditioning
of 2: would produce factorization error since Zi:I may well be garbage.
Now if 2 = AAT then
$ 1- aHTat and

since A 1is upper triangular so is A—l.

We wish to compute the value of the classifier

£(x) = ___1___.5 exp - 2(x-X) ¥ 1 x-D).

em 18]
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If we let Y = A—l(X—i) then it is easy to see that the expoment Q is

-% TR S R TN &Y,

1 T, 1 :éi 2
=YY= 5 LY
i=1

LD
I

Hence if Y = A"'X then AY

X and since A is upper triangular we
can write the recursion formula for the y; as follows. We do it in general,

however, for HYMPS M=6

-
Am—lm—lYm—l + Am—lem = Xm—l - Xm-l

Am-ZmPZYm—Z + Am—2m.—lYm—l ¥ Am—ZmYm h Xm—Z - Xm—2

-
i [ * 3 ¢ = -
ApYp v ALY et A Y T AR TR
In another form
Y =X -X
™ m/A
Tam

y - Xm—l - Xm—l _ Am—lm - 1 (x _ i— - A Y }
m-1 Ap-1m-1 Apim-1l  Ppelpe1 ™P 1l melmm
Y =t (X . -X . -A .Y -A Y

m-2 A m~2 m-2 m-2m m m~-2m-1"m-1

m—-2m-2 (]

1 -
Y= {x, - X, - (A12Y2

+e e o+ A YY)}
11 1 1 Imm



In general,
k

l —
Ym—k = (Xm-k - Xm—k) T j=; Am—k,m‘(j—l)Ym-(j-l)

Det Calculations

T
Since 2= AA” it follows that:

detd = det(aaT) = (det A)(det AT)

(det A)(det A)

(det A)?

Since A 1is upper triangular, its eigenvalues are the diagonal elements of

Moreover, the det of any matrix is the product of its eigenvalues so that

- m

det A = W A,
i=1 "Hii
Hence m 2
- 2 _ ’1
detz- (det A)® = N Aii
0.6
m
2-T..:
det = = i—lA'i s

an easy by-product of the factorization independent of MINV.

Singularity Evaluation

In the divergence calculations one should avoid concluding that z is

"near singular" if detz 2 0.
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This is a classical misunderstanding of the theorem which states:
" E is singular if and only if detz= o"

The misunderstanding arises by assuming a similar (however meaningless) theorem,

namely,
" z_ is near singular if and only if deti,': o"

The fact of the matter is that there does not exist a concept of "near
singular" in matrix theory. The term "near singular" applies to numerical
difficulties one may encounter in inverting matrices and is in no way related

to whether or not z is in fact singular.

Consider the example (3 x 3)

107° 107 1070
A= 0 10'6 10"6
0 0 1076

det A = (10793 = 107182 ¢

Yet A is neither singular nor numerically difficult to invert.

Note: The fact that the example is "upper triangular is of no particular
consequence except that det A 1is easy to calculate by inspection.

In fact for this A

= AAT is symmetric and positive definite (See page 6-7)

yet detz= lO_36 == 0.
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JLFFERENTIAL CORRECTION SCHEMES

IN NONLINEAR REGRESSION

Henry P. Decell, Jr.

University of Houston, Houston, Texas

F. M. Speed

Texas A & 1 University

Abstract

This paper briefly reviews and improﬁes-upon classical iterative
methods in nonlinear regression. This is accomplished by discussion of
the geometrical.and theoretical motivation for introducing modifications
using generalized matrix inversion, other than but in the same general
vein as those discussed by Fletcher [6]. Examples having inherent pitfalls
described in [8], [12] and others are presented and compared in terms of
results obtained using ciassical and modified techniques. The modification
is snown to be useful alone or in conjunction with other modifications

appearing in the literature.
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Introduction

P

Following for convenience the notation of [8], let Ve denote a

set of n responces of the form
Ve = ft(e) + e t=1,...,0

where the response function ft(e) is a known function of t and an
undetermined vector 6 = (61,...,6p). We will call the vector © a least~
A

squares estimate (given the n responses) of 6 provided 6 minimizes

fi 2
Q(®) = (y, = £.(68))" .
t=1 t t .
The vectors are defined

Q' (6) = L(g_é_e_)l

R(®) = (y, - £,.(8))

and the matrices

3(£.(8)) T

£r{e) = ( 6 )
i
0
Q"' (g) = _

00
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Three of the most common differential correction schemes for
A
estimating the parameter vector © are the steepest descent method, the

quadratic approximation, and the Gauss-Newton method, with corrections

respectively given by

AO = -aQ'(8) , a >0
A8 = -(Q"'(8)) Q" ()
86 = -1/2(¢£'(0) £ (6)) 1 (8) .

These methods have their advantages and disadvantages. Of the

three, the Gauss-Newton method is probably most popular.

The authors of [8] present a modification of a classical method and
state that "The'step A® will in general be distinct in both length and

' This is not necessarily the case

direction for each of the three methods.'
from a computational point of view since the matrices to be inverted may be,
for all practical computational purposes, singular; yet the system of

equations may have infinitely many solutions. For example, the Gauss-

Newton correction requires the solution of the equation
1 T 1 = | T
£'(O)£'(B)AB = £'(0)R(O)

since:

~1/2Q'(8) = £'(8) TR(B) .
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It is known that any equation of this form (i.e., of the form
ATAX = ATz, the normal cquations of the least-squares problem: minimize
(Ax—z)T(Ax—z) given A and 2z) always has at least one solution and
perhaps infinitely many. We will try to point out the significance and

consequences of these solutions in terms of their relationship to

differential correction schemes.

The Generalized Inverse

A few basic concepts regarding generalized inverses important to

the development follow.

Theorem 1. The four equations AXA = A, XAX = X, (AX)* = AX, and
(XA)* = XA have a unique solution X for each complex mXn matrix A.
This solution X 1is called the generalized inverse of A and is denoted

by X =A'.

This theorem is due to Penrose [10] and is equivalent to the
apparently more geometric characterization of the generalized inverse

of A which follows.

. + . . .
Theorenm 2. The generalized inverse A of A 1is the unique solution

of the equations

- PR(A)

= Prixy



where P and P e i w.Cicular
vhe R(A) R(X) ° respectively, denote the perperii
projection operators on the range .3aces (column spaces) of A and X.

n any case, it is easy to see that if A 1is square and non-

. + . . :

singular, then A  is the ordinary inverse of A. Much work has been
done recently in the area of generalized matrix inversion, including
theoretical developments and computational techniques, rendering it a
very useful tool in matrix theory and applications. A rather exhaustive
bibliography concerning applications of generalized inverses can be found
in [2], [3], and [13]. We will not develop the details of the basic
concepts, but rather state an important theorem regarding the solution of

matrix equations in general.

Theorem 3. The matrix equation AXB = C has a solution X if and only
if AA+CB+B = C, in which case all solutions are given by

x = acet + s - ATassT

wnere S 1s an arbitrary matrix having the dimensions of X.

The Equation ATAX = ATz

As stated earlier, the.Gauss—Vewton method involves the solution
of an equation of this type at each iteracion. The following corollary
to Theorem 3 will give some insight to a possible course of action one
could take at those times during the iteration process when the matrix

f'(G)Tf'(S) (or perhaps even a matrix such as Q''(8) in another method



reguiring inversion for the calculation of the -.orrecticn A46) is
actually or nearly singular. For the purpose of this paper, we will
describe how generalized inversion can be useful in iterative techaiques

- . - , T T
requiring the solution of cquations of the form A"Ax = A7z,

Cororlary 1. If A 4is any mXn matrix and z is any mXl1 wvector, then

. T s .
the equation A"Ax = ATz has at least one sociution and all solutions are

given by

X =atz + (1 - aTa)y
where y 1is arbitrary having the dimensions of x.

The proof of Corollary 1 is an immediate consequence of Theorem 3

andvfact that ,(A.TA)+AT = A+ [10].

. T T . +
Corollary 2. Among the solutions of A"Ax = A"z, the solution x = A z

.

has the smallest Euclidean norm (henceforth "norm" will be denoted |]|°*

The proof of Corollary 2 follows from the facts that I - A+A is
the orthogonal projection operator on the orthogonal compliment of the
range space of Af and hence that A*z and (I - A+A)y are orthogonal

for every y. In fact,

Hatz + @ - afwyy]|? = 1422 + || - sy )2

Lt o2
IENET I

A
i

jv
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The significance of Corollary 1 is that there may be infinitely
many possible corrections A0 satisfying an equation defining a
differential correction scheme in the presence of a singular or, in the
computational sense, nearly singular coefficient matrix., There is a
tendency to disregard or remain unaware of these solutions and, with the
inability to invert the coefficient matrix, to look for new or modified
techniques such as those found in [1], [5], [8], [9], and [12]. For
example, in [7] Jennrich and Sampson madify the coefficient matrix by

selected rows and columns. In [8], Marquard:t changes the diagonal of the

[¢]

oefficient matrix. It has been our experience that these solutions should
be given careful attention in the case of what will hereafter be called an

apparent (i.e., actual or computational) singﬁlarity. .
Fletcher [6] points out that in the generalized least-squares

"... A most important property of the

(Gauss-Newton) or Newton methods
generalized inverse formulation is that in all circumstances (i.e., full
rank or not), even when the generalized least-squares method would fail,
the directicns of search generated are downhill and so an imporvement can
always be made to the sum of squares (assuming the approximation is not
already a stationary point)." In this connection, the significance of
Cocrollary 2 is that there is a reasonable way to choose a correction AH
satisfying the defining equations of the scheme whenever an apparent
singularity occurs. We propose fo choose the minimum Euclidean norm

+ . . . s
correction A z (i.e., the correction of shortest length consistent with

the correction equation). It has been our experience that in nonlinear



equations other solutions can result in failure of convergence.

The suggested correction certainly depends upon the algorithm used
to calculate A+ and the actual computational way in which the algorithm
establishes that A is not of full rank (ife., ATA singular). Of course,
this is intimately connected with near-zero tests in the algorithm,
sensitivity to dependent columns or rows, conditioning, and so forth. We
should further point out that, for a general d;fferential correction scheme
of the form. M(8)AB = z(€), the choice of the correction should be
AB = H(6)+z(6) if there is at least one solution for A6. Of course,
according to Theorem 3 there will be at least one and poséibly infinitely
many solutions A8 if and only if M(6)M(6)+z(6) = z(0). Moreover, if
therg is one and only one solution, then that solution is indeed given

by A8 = M(8)Vz(e).

For example, in the Gauss-Newton method, M(9) = f'(e)Tf'(S) and
2(6) = £'(0)TR() so that A8 = M(8)1z(8) = (£'(8) ' (8)) e (8) TR(O) =
f'(6)+R(6). Even if M(0) is nonsingular, then (f'(e)Tf'(e))+ =

f'(G)Tf'(e))-l, and either form of A6 may be used in calculations:
A6 = (£'(8)TET(8))FEr(0) TR(B) = £'(8)TR(B) .

In other words if M(®) is square and computationally nonsingular, the
classical correction is, in fact, the minimum norm correction. We will
not discuss the comparative aspects of computing A8 in a correction

scheme such as the Gauss-Newton method by one or the other of the



theoretically equivalent formulas:

(1) 48 = £ (@ £ O e (0)Tr(0)

(2) 48 = £'(®)TR(E)

Calculations in our excuples use (2).

We have had unusual success with this technique in many practical
problems too numerous to mention here. In many cases, one definite
advantage secems to be the ability to continue making corrections of
reasonable length and perhaps, as in the Gauss-Newton case, reasonable
direction through regions in which the coefficient matrix M(§) behaves
bacly. We do not propose this technique as a cure-all but rather that it
shculd be included among other useful techniques in nonlineaf regression.

A few examples having known pitfalls will be presented in the next secticn.

Examples.

In the following examples, the residual sum of squares Q(6) will
be presented in tables by iteration number. The values of Q(B) for the
methods cited will be those values tabulated in the references cited. Some
authors divide Q{8) by the degrees of freedom. For clarity and easy
comparison we indicate this division in the tables when necessary. Finally,
the residual sum of squares given by the method of this paper (minimum norm

correction) will be noted MN; Q(8).
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Results of the method of this paper compared with thosc of the
locified Davidon Method (MDM) used in [12] to find the parameters of an

exponential model discussed by Hartley in [7] are given in Table 1.

Table 1

Exponential Model (Hartley)

i
Iteration MN; Q(6) MDM; Q(6)

| 0 ! 27376 i 27376
1 14586 20127

2 : 13779 ; 15412
: | |
3 = 13408 ‘ 13552
4 13394 13485 l
; 5 A 13350 - | 13449
6 L 13425
. !
7 ' 13394 f
; |
8 e 13393
9 13390 i




A scecond exponential model given by the authors of [&] points out
a failure of Hartley's method [7] due to a sinzilzr partial derivative
matrix. In [8] a stepwise regression scheme (SR) is successfully utilized
for this example. The results of the (SR) scheme compared with those of

the method of this paper are given in Table 2.

Table 2

Exponential Model -~ Singular Partials

1 ! ]
E Iteration ) MN; Q(6)/8 i SR; Q(6)/8
|
i 0 | 521.41 o 521.41
| 1 429.84 ' 429.84
| 2 : 39.11 | 88.15
3 15.765 83.74
4 { 15.545 *
AlO ; . 21.33
30 '; 15.545

*The value of SR: Q(8) was not tabulated in [8]
for this iteration.

Another six-parameter exponential model having inherent singularity
problems is presented in [12] using the Modified Davidon Method (D).

A comparison of the results using the technique of this paper is given
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in Table 3.

Table 3

Six Parameter Exponential Model - Singular Partials

Iteration MN; Q(B) MDM; Q(9)
| 0 f 21.38 21,38
| 10 f .873 ; 2.39
20 ’ 792 1.99
30 ' .396 1.77
40 | | 1.59
50 SRR 1.41
| 60 .90
70 L4l
80 .407

Concluding Remarks

We have taken the liberty to exclude a reproduction of the detailed
description of our example models. These models are thoroughly treated in
[71, [8] and [12]. The tables give some indication of rates of convergence

and a comparison of residuals only. We do not wish to leave the impression



that iteration counts are comparable. For example, one Gauss-Newton
iteration could have been equivalent to p conjugate direction stezs

for the matrix inversion employing the Davidon method.
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D1 VERGENCE CONS IDERATICNS

Problem Statement: Let 7(', 7f2, e e 0 ,'ﬂ; be n distinct, normally distributed
n —
classes or populations of two dimensional response vectors x = (aﬂl,/az), where

/ai is a measurement of the relative response of x alcng channel i,

1 -

S" (A ,A
/ = Vi
L

channe! 7

The problem is to determine the "best c¢hannel™ in the sense of divergence and
in the sense of minimizing the probability of misclassificatione
Let Z:i denote the sample covariance matrix for the ith class and suppose,
after training, we find that Zii 2 ly 0 = 142, 6 « o 5 Ne Lef//(' be the
mean associated with the ith populetion; then it is easily verified that
the interclass divergence is:

p(i,j) = (ui -’uj)ei 0
The density function for the ith class is:

e” (x 'f‘f)e
2m

Prlx) =
It is useful at this time to consider the partitions of a given channel axis
determined by the maximum likelihood solution of the Bayes discriminate probfieme
Recall in this case x is assigned to T if:

In Pk(x) = max %hln Pi(x), i = 1,2,00 0 0N f
Under our assumptions that Z;i =1, it is easily verified this becomes x is
assigned to ﬂ/k ife

(x-/ﬂ92=nﬁn§(x-/192,i= 1,25 ¢ o o ,n}

We shall assume LH 4 Lli+l for i =1, 0666 5n=1e

Now note 2
(x = 4t )2= (x = clg) + (U il ]
Sl x ,‘ i A | ", i+l)

. \e . 2
= (X -,flLi) + 2(“; "",L(i*!)(x -,/-(i) + Sui -’,’“i"")



(Z//Page 2

2 2
- ,’ > - L(. i - . - -
so that (x ;!li+t) 2 (x . I) whenever 2“'! ’z[|+])(x .;a;) + (zti 1/1.
that is, whenever x > é(;z' + 4 i+l)°
Thus associated with each mean (¢ , we have a region R'
cd
populaticn where the R *s are defined as follows:

i

R = {x X £ 5@1 * U )}
i
§

such that if x € Ri' X

is assigned to the 7

R = Xg Q(ZL. *éli)é X £ |§(,_‘¢' +v4(i+')fi‘2.ooo’n-l
R =
n

X3 é—(,,t +Lcn)éxj

Now consider the n-class problem with equal a priori probabilities q, = —, the
i

!
n
cost of misclessifying an individual from population 7Tj as being from population
’W)i,c(i'j) = |, and the probability that x belong to Rj given that the individual
is from 7 , P(jli,R) = Pi(x)dx » then the cost of misclassification to be

i “ R

expected totally is: J

Q(R) = Zq;; : c(jli >P(J|'»R>5 '-ﬁ [ Z -§R P “"J

ni=f|{ j=I1 i
o J'/i [ o Jr‘lz j
n Lo
For i = 1, L ( Prox = g Py dx = —f - 20=i)
=2 R, /N Yo i a
J U R, U1+ Uy)
j=2 J ¢ | U2
-~ 0 o
_ =L oy
o/ (=)
@ “E (1=l )
[ - i 2 ‘ 1 - | 2
=l e ¥ dy - 7 e 2 qy
Jéﬁ 0 Jgﬂ‘o
Ho@an)
- éyz - L2
= e dy since by symmetry of e 27
70

l 03] g’
—_ - L2 i -2
we have /27 - e 2 dy = 2 1;(1 e~ 2 dy = 1.
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When i = n we again use the symmetry of the function so that

. )
n=l § / 2(/un+/§1-l | 2
Z_ ‘R Pi dx = U-l Pi dx = 7'_~ : e” z(x =in) dx
lfé(#-l'“n) 2
= —= d
/277 - € Y
(e8]
l 1°
by 2
val 5(,[Ln"%1-l)

- 475
“0

\ f o=,

When | < §<n

i( P, dx = '-Zlg P, dx + 2{ P. dx

= ‘ =1 7R; jierR;
JFt
'§EGIR Pi dx + gn P, dx
=1 j=LiJ+le
.
: (. b @© !
-'.:[ i) | F(x=1t;) ( = Fx=u,) !
-7 e ) e =TT ax
i - A {
- 2 %)
i @
L
| S - g S 12
- 3y -
126l e % dy + : o
1A
@ +I7(/i{
{ 0] i
| ? - &° - &7
=/z*~| | € ¥+ € dy
L2l y) 2 =i



CQL Page L

E@,i-1) _ WoGiel,i) _ |
| (?JD( D2 o - Xf\(o.( .

/0

Finally we have the total cost of misclassification is

| W g2 WRGLET L
Q(R) = ;',- [é- - Jal_—ﬂ(o \}[ e %Y dy + 2-<' _:/_2;%(2 . Ly "
i=2 0

2 -
Jor

4]

: e dy + /[ _ e
‘J “li=27 o i=t-° 0
-J;j”_?“"”‘w 7
| i R | ) D(l"’l.l) | 2 ;
—— - N - éy
So Q(R) = n l’(n - l) - ‘,—-’f-f L e dy J (I)
Thus note that Q(R), the total cost of misclassification, does not depend

j' -é-ifo(i,i-[) %yz n=|I '5\[5(7:'—:_'5

dy

on D(i,J) for j # i=1,i+le But recall the definition (or perhaps criteria) of total

intercless divergence, namely,

n n
D= é_i Z’ D(isJ) (2)
= J°=: )

i

| believe equations (1) and (2) express the main problem with the existing

feature selection — clessification scheme, namely that the feature selection

criteria (2) is inconsistant with the classification criteria (1)e This paper

—

has shown that when zli = { for all i, and Lli<',[li : » @ "better" feature
. .

~ ~
selection criterle would be to desire D large where in this case D < %(n = 1) and

o~ Mf o) g

D= == e dy
2T

.

f SO
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~ , 3 o y2 | (O . 4y2
The ™nice® property about D is that 1. e dy = L4987 and i:? e dy = o5
1260

257

so that there is no need to worry about D(i,j) becoming too largee
Finally, we consider a numerical example with all covariances equal to | and n = 3,
Assume the means along the channel | axis are given by
111' =6, Aty =0, /413 =6
and the means along the channel 2 axis are given by

-4{1 = 0, 'L(z =1, 1113 = 12 .

= p(1,2) + D(1,3) + D(2,3) = (-6)2 + (-l2)2 + (6)2 = 2]€, and
channel |

Then D

= 2 2 2
DLhannel 2 (1) * (=12)° (=11)" = 266, Thus the divergence criteria would imply

selection of channel 2,

But, the total probability of misclassification is given by

-2 [ - 1gvf‘%10(2,|) e »° dy = -2 2lo.2) e by dy J
25 o /o /o

- '3 '3 o
.I_f - & lf - 3y
{"/Eﬂ"oe Y "G ¢ Y |

=2 (1 - 4987 - 4o8T)

Q(R)

channel 1 3

[}
Wi o

W

(e

- #0017 and

Q(R)

channel 2 =

1 LA -
' |(‘2 12 |2 1.2 J
— -2 - TT -4
[ T rlo € Y= il © dy

(1 = «1915 = ,5000)

WD W —

~ 02056
Since the probability of misclassification is much less by this criteria the

choice would be channel |, A pictorial representation is given befow.

A L0 #3 P2 |

1
‘L't /('.(3

p Channel | ] Channel 2
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DIVERGENCE CONSIDERATIONS II

by

J. A. Quirein

The interclass divergence D(i,j) in a.sense, a measure of the
"separability" of two classes Hi and Hj. The problem of determining a
function F of the interclass divergence over all possible combinations of
a fixed number of channels such that maximizing F will minimize the

probability of misclassification (for that number of channels) has not yet

been solved.

Consider the case of three distinct classes Hl, HZ’ H3. One such

function of the divergence typilcally constructed is of the form:

F = D(1,2) + D(1,3) + D(2,3).

It has been previously shown that maximizing F need not necessarily mini-
mize the probability of misclassification. A second commonly constructed

function of the divergence is the following

F = min(D(1,2), D(1,3), D(2,3)).

To show how maximizing F does not necessarily minimize the probability of

misclassification, let the means along the channel 1 axis be given by

My =0, 4, = 2.2, My = 5.2



D -2-

and the means along the channel 2 axis be given by

Bl =0, 82 = 2, 63 =8

then

FIChannel 1 - oo (4.84, 27.04, 9) = 4.84

FlChannel o = min (4, 64, 36) = 4

and maximizing F implies selecting channel 1. The probability of mis-

classification is verified to be

Q(R)Ichannel 1 135

Q(R)lchannel 2" 107

which indicates in this case, the '"best" choice would be channel 2.
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PATTERN RECOGN ITION AND THE POTENTIAL FUNCTION

Supposing that we have two sets A and B which do not intersect in a space(ZGZJUﬂﬁ)
\lé, then there exists at least one separation function Q”(X) for which @? (x), 0
if XE A and Y'(X) <O if X €B. The idea of the potential function is to
buiid, by an iterative process with a finite number of known points from A and B,
a sequence of functions Kr(x) which tend to one of these separation functions
as :_increases.

Assume that in i}ffhere is a linearly independent system of functions,
%r (X), a subset of a complete system, such that for any fwo separable (always
taken hereafter to mean in the geomefrtc sense) sets |n/XY Y (x) = Zi ﬁP (x)
separates these two sets, N depending on the sets to be separated. ln'o:der to
have convergence in probability let the ép}(x)'s be an orthogonal or orthonormal
systemo Additionally if K(X,Y), the potential function, is bounded on AUB and the
function U (X) rigorously separates A and B(i.e. ¥ (X) 4—5 :: :gg where £, 0) ,
it can be proved that there is an integer m, independent of the teacihing sequence
so that the number of errors corrected does not exceed Mo If the appearances of
the points in the teaching sequence are independent events and at any rth step
there is a strictly positive probability of correcting an error if separation
of the sets hu$¢ not yet occurred, then the probability is unity that the separation
of the sets will be realized in a finite number of steps.s |f we agree to terminate
the teaching process as soon as no error has occurred in E_examples in the sequence
following an error correction (!? an arbitrary prescribed integer) then the entire

teaching sequence wiil be terminated in Lm stepss Let P be the probability of

error in the process after termination of teaching and 670, §>70, then it can
In (2/m) /m)

be proved that the probability that P<€ exceeds | =5 if L satisfies L>
- In (1 -e)
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ALGOR} THW
The construction of a separation function ¢ (X) shall be accomplished as
follows:

Let the potential function be defined by:
N

K(x,v) = 2 /Iiz Cfi(x) C/'fi(Y)

i=]
and let A be the positive set and B, the negative one,
For KI(X) we will take:

f K(X,X ) if X & A
z-x(x,x|) if xle B
Inductively we proceed after the rth step, inwwhich the function K (x) was
- r

constructed, Compute Kr(xnl). I1f either Kr(xm)> 0 and xr”e A or Kr(xr”)< 0

with our original

and Xy € B (i.es the function Kr(x) agrees at the point X o

! !
convention of A, positive and B, negative), we shall set K |(X) = Kr(x) and proceed
re

to the next point X gor If Kr(xr+l) > 0 and Xpay € By set Kr*l(x) = Kr(x) - K(X,Xr*').

I(><) =K (X) + K(X,Xr”). In either of the

latter two cases the potential function is altered by addition to it of the potential

1f K (x )<0 andX
r

rol r+l€ A, éef Koo

of the (r + I)st point with sign necessary to "correct" the function at this step.

EXAMPLE
- ' p
For our space we choose L—!,l] X [-I,!J e let A= z(x.y): Tg‘é XY f:f% f
and B = i(x,y)z %f x,y; "g—gand, using the training points given in figure I,

N "> 0 if XE A
ild ti f H = C ; . i
build a separation function 7 (X) .z_' : <;i(x) <Oifx<p"® Since | and

1=

x + y are linearly independent and defined on using the Gram=Schmidt process

we find for l%l(x) = | and qhe(x) = x + y = | we have an orthogonal set of functions
t/ 1
where the inner product is defined b ¢ X)) = j/ Jf / 47
P ¥ C400, G0 =) ) 400 @ 0x) ax gy

Letting /3i =1, K(XX ) = 1+ (x, + Y = 1)(x +y = 1) where x = (x,y) and X, = (xk»yk).
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X X
X X
X X X.
4 X X
X X
X X X
1 X X
H X X
X X X
¥y - X X
Xl=(IO/I6.lO/I6) Xg =( 2/1€, 2/16) xwa( /16, 1/16)
Xo=( L/16, L/15) x|0=( 9/16, 8/16) x|8=( 7/16 ,10/16)
x3=( 8/1é, 1/16) x”c-( L/1&, 2/16) x|9=( 5/16, L/16)
x,=( 1/16, 5/16) X =( 6/16, 8/16) X, /16, 6/1€)
x5=( 1/1¢, 2/16) x|3=( L/16, 1/16) x21=~( 5/16, 5/16)
Xg=( 8/16, 9/16) x| =(3/16, 5/16)  X,;=( T/1€, 8/16)
Xo= 8/16, 6/16) XIE»=(|O/'6’ 9/16) x25=(|o/|é. 8/1¢)
Xg=( 2/16, 3/16) X, =( 3/16, 3/16) x5 =(3/16, 1/16)

Figure 1



K, (X)

AN

x+y=1=0

Ki(X) for 124,5,6,8,9,1C,11,1L,15,16,19,21

j=02)23,2),

AN
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Construction of Kr(x) will therefore always yield a line, moreover, a line whose
slope is negative one, Since A and B can be separated by such a line choice of
N =2 will yield a separating function as desired.

By definition Ki(x) = - K(X’XI) 2 el - ﬁ (x +y = 1) since Xy € Be Figure 2
shows K‘(X) in relation to A and Be Testing X, in Kl(X) we find K'(xz) = -—;<o.

Since X, € A put Ke(x) ='K'(X) + K(XsX%5) = -'ﬁ (x +y = 1)s In figure 3 we see that
" 2

X3 lies below the line K2(x) = 0 and testing we find that K2(X3) " & > 0 and

. H - . :
since x3€> B, KB(X) ='K2(x) - K(x,xs) = - - % (x ¢y = 1)s Since K3(Xh) <o
and xi&e A (see figure L), Kh(x) = K}(x) ;lK(x,Xu) = - %é’(x +y=1) Since

> = & - — v = 1o
KL;.(X5) 0 and X5€: A, K5(X) Kh(x) '.s(x sy =1)
Continuing the process we find:

Ké(x) = K_(x) = Kh(X) = - %(x +y=-1)

5
gX) = = 1 =70 (x ey =1)

= = = s-'_s + -
Kg(X) K9(X) KIO(X) K”(X) o (x +y=1)

Kmu>=m4m=-'-iu+y-n)
Km(x) = KlS(X) = Klé(x) = - -E (x +y = 1)
Kyp0) = K (x) = =1 = Fllcay = 1)
K1o®) = = sy = 1)

Keo(x)=—l-!é9-(x+y-l)

Ko (X) = -'f(x +y-=1)

K22(X) = KEB(X) =“K21*(X) = - -):l*% (x+y=1)

Figure 5 shows the relationship of Ki(x), i = Uye o ey 2b7fo the sets A and B,
2

Taking ’LP(X) = :.2}4()() = -] - %2 (X *y - l), _ZV(X) = ié;l ci yi(x) for
3

o ™ Tg e« Testing the function, it does, indeed, separate the

training sample, for 1) (X) > O for all X& A and U/ (X) £ O for all X € Be A

cp == 1 and ¢

geometric analysis of the sets shows any function of the form =1 + q(x +y = 1)

2,a*1, 3

will separate if 3 q L

and our q = --%g satisfies this inequalitye
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Although the training points of this example were purposefully "rigged” to
insure that each part of the definition of Kr(X) would be used and that conQergence
would be accomplished in the limited number of training points, in the latter
case, if the training sample had run out without clear separation it could have
been reused in the continued construction of the function. Certain points appear
more critical to the process;‘in our example, those points in A nearest the
shaded region in figure 6 are more sensitive to change and those points in B
nearest to the line x # y = | = 0 and fto its |2ft produce more change as the
algorithm progresses, However,these remarks are pertinent to this example alone

as alteration by so simple a change as choice of X € A would require completely different,

t
though analogous, comments,

t was necessary to avoid int hi = i
| n y void any point X__ for which Kr(xr+|) 0 since

|
the algorithm does not deal with this possibility (i.e. take X on the line

x +y=1=0at alternating steps of the function construction beginning at r = 2),

. - "O =
It would seem advisable to add to the algorithm "if Kr(xr+l) 0, let xr+2 become

the (r + I)st point, discarding the original XF+( as a training point and

LH]
renumbering the points,

EVALUATION

In [!0], the purely geometric method of the potential function is compared
with a structural approach, basically one of recognition of broad interclass
similarities,and it is the opinion stated in this paper that neidher method is
suitable to solve complex problems, In the case of the recognition of the letters
of the alphabet photoelectric cells J000xI000 may be needed for a clear picture,
making the vector representation 1,000,000-tuples, which might produce a memory
storage probleme In the development of the idea of a potential function for

construction of a separating function any orishonormal system of functions 4;_(x)'s
i
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will produce convergence of the algorithme It seems obvious that for some
choices of the system convergence might be more rapid than for others. However,
nowhere was there mention of how this choice might be made to minimize B, in
addition q/(x) can be realized as a finite linear combination of the 47‘(X)'s
where the number N of the gli(x)'s necessary depended on the sets involved.
There was no discussion of the problem of how determination of an appropriate
N, let alone a minimal one, could be made.

This method does, however, have the advantage that convergence in probability
is assured in a finite number of steps to any desired degree of reliabilitys. The

experiments made and reported bear out this result by the high percentage of

accuracy attained.
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Introduction

The purpose of this paper is twofold:
(1) Introduce the concept of fuzzy set
(Zadeh [11)
(2) Apply the concept of fuzzy set to pattern

recognition (Wee [2])

We will consider only the ideas from fuzzy set theory that are
directly related to pattern recognition., Our approach to pattern
recognition will follow the PhD thesis of W. G. Wee. In this thesis
an iterative procedure for learning the equi-membership surfaces and
for generating a set of discriminate functions for two pattern classes

is given.



Fuzzy Sets

The concept of fuzzy sets was first introduced by Zadeh [1].
Since we will be interested in fuzzy sets only with respect to pattern

PR . . . 1}
recognition, we will define our concepts in Q = E .,

Definition:1l: A fuzzy set A in § 1is characterized by a membership
function fA:Q + {0,1] with the value of fA at x representing the

"grade of membership'" of x in A,

As an example of a fuzzy set in El, let A be the set of all numbers
"much larger" than 1l4. One can give a precise characterization of A by
specifying fA(x) on El (eg. fA(—l) = 0, fA(lOOO) = .,2,

fA(lO6)b= .5 , etc.). It should be noted that this characterization

is subjective.

Definition 2: The union of two fuzzy sets A and B is a fuzzy set C,

written C = A U B, whose membership function is given by

for x € Q.

Definition 3: The intersection of two fuzzy sets A and B is a fuzzy

set C, written C = A n B, whose membership function is given by

£.(x) = Min[f, (x),f5(x)]

for x e Q .



Definition 4: A fuzzy set A is convex if and only if the sets Ta

defined by
Ta = {xlfA(x) > a}

are convex for all o e (0,1].

Definition 5: A fuzzy set A 1is bounded if and only if the sets

Ta = {foA(x) > al

are bounded for all o > 0.

Definition 6: The maximal grade of a fuzzy set A, written MA is

defined
MA = sup fA(x)
x g 8

Theorem 1: Let A be a bounded fuzzy set. Then there is at least one

point X, € 8 at which MA is essentially attained in the sense that,

for each € > 0, every spherical neighborhood of x contains points in

0

Q(e) = {x[f, (x) > M, - €} .

Definition 7: The core of a bounded fuzzy set A, written C(A), is the

set of all points in @ at which M

N is essentially attained.

Definition 8: Let A and B be two bounded fuzzy sets and H a

hyperplane. Let e IR such that f (x) < on one side of H
y 1 A =



and fB(x) i_KH on the other side of H, Set MH = inf KH and

DH =1 - ﬁH . DH is called the degree of separation of A and B

by H. The degree of separation of A and B, denoted D, is defined

as D=]1-M where M= 1an MH .

Theorem 2 (Separation Theorem): Let A and B be bounded convex
fuzzy sets. Set C=AnB. Then D=1 - MC (where MC is the

maximal grade of ().

Note that Theorem 2 says that the highest degree of separation of two
bounded convex fuzzy sets A and B that can be obtained with a
hyperplane is 1 - MC .

The above definitions and theorems are contained in Zadeh's paper; they
do not exhaust all of the material contained there. Wee introduces the

following definitions.

Definition 9: A fuzzy pattern class is a pattern class which is

a fuzzy set,.

Definition 10: A semi-fuzzy set is a fuzzy set A such that

MA = s;p fA(x) = M:x fA(x) =1.



foos

Definition 11: Let A be a fuzzy set. The non-fuzzy section of A is

defined by NFS {foA(x) 1} and the complete~fuzzy section of A 1is

A

defined by COM 1} .

{xlfA(x)

Definition 12: A equi-membership surface of a fuzzy set is a separating

surface such that points on the surface have equal grade of membership.

Recognition of Two Fuzzy Sets

The discussion that follows deals with the situation in which

there are two bounded and convex fuzzy pattern classes, A and B, to

be recognized.
Suppose we have a set X of training samples. Let o € [0,1] and

define

=
]
Iv

= {xlfA(x) o and fB(x) < a}

and

e
]

{xlfB(X)

|v

o and fA(x) < a}
We further assume that o can be selected so that X c L, U LB E_QX = g7,

A

Note that the separation theorem tells us that the lowest value of o that

can be selected is In practice we seldom know M

MAnB * AnB °*

Wee's algorithm is an iterative procedure for searching for
equi-membership surfaces until the complete set of training samples is

contained within these surfaces.



I

The first step separates the non-fuzzy section and the complete-fuzzy
section of the training samples for A(B). [Note that this step may not
be necessary] Separating boundaries are then generated to retain the
complete~-fuzzy section of A(B). The retained training samples are then
mapped into Qy = En. Separation of the non-fuzzy and complete-fuzzy
sections of "A"(B) in Qy (as in Qx) is then determined. The complete-
fuzzy sections ' of A and B are retained and are mapped into Qz = En.
This procedure continues until QX is partitioned into two regions.

The algorithm converges in a finite number of steps. The algorithm
generates a set of discriminate functions which partitions QX into~
two regions; generalization to any other point in QX is based on these
discriminate functions. The evaluation of this generalization must be
based upon experience.

Figure 1 gives a block diagram of the algorithm.

| 7ur | yJTu.zz: 2| 7.0

GED

L7y 7

Figure 1l: Block Diagram of Algorithm
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The training samples X are the input for Transformation Unit (TU) I
which is a polynomial transformation in many cases. The output of TU I
is a set Y E_Qy which is sent (usually) to the general adaptive element
(GED). First the GED uses the generalized inverse algorithm (Ho and
Kashyap's algorithm [3]) to test the linear separability of the samples
and to find the separating hyperplane., If the samples are not linearly
separable Widrow and Hoff's algorithm [4] is used to generate a

minimum mean sequence error hyperplane H: XTW + WO = 0 . Note that

the distance from a point Xi to H is di = ng + WO . From the
samples "close'" to H and those erroneously classified, the minimum

and maximum distances from H are searched in order to obtain two

parallel separating hyperplanes Hl and HZ' They are as follows:

H,: X%y + W, - |Wld(max) = 0
H,: xTw + Wy - |W|d(min) = 0

' The following decision rules are now implimented:

(1) PeA if Plw+ Wy > |W|d(max)

(2) PeB if PW+ Wy < |w|d(min)

T
(3) If P is such that |W|d(min) < P'W + Wy < |W|d(max) ,
send P to TU II. Let Y' represent the set of P's that were not
classified. Let Yi € Y'. Then TU II transforms Yi € Y' into

Zi € QZ = E" . Two of the types of transformations used are as follows:



(1) Yij - Zij

(2) Yij -+ Zij

The set Z of Zi's
(We remark again that

transformations,)

foo

T
., [y W+ Wl
|w]

T,
[y W + Wl

exp{-o
|

is then sent to the GED and the process continues.

the process terminates after a finite number of
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ABSTRACT

The purpose of this paper is to discuss the properties of a linear
discriminant function for the case of arbitrary distributions with
equal covariance metrices. Using two examples, a comparison is made
showing how the difference of the means relates to the covariance

matrices,
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In the solution of recognition problems the linear discriminant

function LDF of the form
d(x) = 12 (uy = po) = Slpy + po) T () = pp)

finds wide application, where the vectors in the n-dimensional space (L
of the recognized object, the mean values, and the general covariance
matrix of the distributions in question are denoted by x, Ups Up and S
respectively. The method of application of the LDF consists in deter=
mining the membership of the object x in the first class if XERy =
{ X ] d(x)Z\Og and in the second class if x¢{l = Rye

The problem is to carry out the discrimination process efficiently
in the case of imcompletely known distributions, for identical covariance
matrix S;I = 7 5 = 7., since in practice the test of normality of multi-
dimensional distribution is rarely made. 1f« = (PI - Pg)'EZIkPI - pe),
the interclass divergence, then the bound of p({), the probability of
misclassification, is given by
(V) P(dd‘igﬁ(ui - u2)"fl(ul - u2) + ll -
for the upper limit and O for the lower limit. (For the proof we refer
the reader to 1 6] ).

I¥ the recognized object x comes from the one dimensional space,
then the relation between the distance between u, and U, and p(X)
can be easily computed. In order to obtain p(X)< ¢ for some € >C
(2) \u, - uz{izelﬂ'é"( | -€/¢ )%
Thus in order to compare two different problems with given covariance

matrices, consider the following numerical example.

Ve



Example 1.

Let 5, |- L), 222 = () and € = 1/10. From the equation (2)
we obtain |u| - u2\2|2 forz| but\)/ | -VZ'\23 forz2 in order
to have the maximum probability of misclassifisation less than or

equal to € = 1/10. Note that in each case the inter-class divergence

is 3. The Figure~! describes this examplie graphically.

Hi Mo

Y, Uy

Figure=|
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In the case of multidimensional space, from the equation (I)
our scheme in comparison of two problems with given covariance
matrices is quite obvious, LetX = (u| - ue)'jijku, - u2)’ then
this equation gives the ellipsoid in the principle axes plane with
the length of the ith principal axis EJXEZQ, where >\i,X1,~~~,>\n
are the eigenvalues of?i . Hence as long as the difference of the
two means P and,Pg lies on this ellipsoid, the interclass divergence
will be constant and so the upper limit on the maximum probability
of misclassification remains constant also. 1t is cleafr that the
shape of the ellipsoid depends of the covariance matrix. ‘The
dependence of the function p on the magnitude of the degree of
divergence of the classes ¢{ is shown in Figure-2., The curve denoted

by P shows the relation in the case of normal distributions.

© 2 4 6 8§ 1 2 14 w X

Figure=2
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Evatuation,

For arbitrary interclass divergence o{ the maximum probability

of misclassification of any classes using LDF with unknown u,, u

1> 72
and Z is greater than the corresponding probability calculated for
multidimensional normal distributions with the same u', u, and 3 .
However, the maximum value of the probability of misclassfication
is a decreasing function of K and tends to 0 as X —»c¢> , The lower
limit of the probability of misclafication for arbitrary & is equal
to 0, which signifies that cases may be encountered even for small
where the LDF constructed will classify without error. Foro >
the probabulity of misclassification is always less than %, ie€e,
in these cases classification bu means of LDF will always be better
than random classification with equal probabjlit¥tes of assigning
the objects to the two classes. For O<o <l the maximum probability

of misclassification for the two classes is greater than %, which means

the operation of the LDF may be poorer than random classification.
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In this paper we discuss linear programming and linear programming like
techniques as applied to pattern recognition problems. Our method will
be to summarize three relatively recent research articles on such appli-
cations. In particular, we summarize the main results of each paper,
indicating the theoretical tools needed to obtain them, and we include a
synopsis of the author's comments with regard to the applicability or
non-applicability of his methods to particular problems, including compu~-
tational results wherever given. For more detailed information on the
methods mentioned here or other such techniques, the reade; is referred
to the particular research article of interest.

The basic problem considered in all three papers is the following:
Given two sets of patterns A and B (we consider each pattern as a point
in E® - Euclidean n-space), does there exist a surface in E" which
separates A dnd B? That is, does there exist a surface in E" such
that all the points of A. lie on one side of the surface and all the points
of B 1lie on the other side? A special, but much studied, case of the
above question.is: Does there exist a plane (hyperplane) in E' which
separates A and B?

The paper is appropriately divided into three sections, one for each

article.

M- a
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1. Linear and nonlinear separation of patterns by linear programming.

Let A and B be two sets of patterns, the set A consisting of
m patterns, the set B consisting of k patterns, where each pattern
consists of n scalar observations. Assuming that each pattern represents
a point in fEn, we wish to determine a surface in E° that separates
A and B.

The author of this article, 0. L. Mangasarian, considers two mefhods
of attempting to separate A and B and states that a generalization of
his second method can be made. In particular, Mangasarian attempts to
separate A and B by:

(i)liﬁear separation (by a plane); and

(2)a quadratic surface.
We now give a summary of the theoretical details and development of the
algorithm.

A pattern will be a row vector (xl,...,xn) in En, each entry X,
called an observation. We represent a set A containing m patterns as
an m X n matrix, each row of which represents a pattern in A.. Using
this notation, our problem is to determine a surface in E' such that if
the m rows of the matrix A and the k rows of the matrix B are
considered as points in En, then they fall on opposite sides of the
surface. Mangésarian states and derives his results for the linear sepa-
rability case and states two of the corresponding results for the quadratic
case. We follow his lead and restrict ourselves to the linear case.

Thus, we wish to determine a single plane
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xd - y=0 (1

where d is an n-dimensional column vector of real numbers, and Y 1s

a scalarﬁ(real number) such that

Ad - ey >0 (2)

Bd - ly <0 (3)

where e and '1 are respectively m- and k-dimensional column vectors
of ones.

We now make the following definitiom.

Definition. Two sets of patterns A and B are linearly separable if

and only if there exists some d,y such that (2) and (3) are true. If

no such d,y exist, then A and B are said to be linearly inseparable.

Lemma 1. A and B are linearly separable if and only if there
exists an n-dimensional vector c¢ of constants and real numbers o and

B such that

Ac - e0 20 (4)
-Bc +f8 20 (5)

oa-8> 0 (6)
f>2c2-f (7)

where £ is an n-dimensional column vector of onmes.

Now, if o - B 1is considered as the objective function of the linear
programming problem with constraints (4), (5), and (7), we have the fol-

lowing theorem.
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Theorem 1. Necessary and sufficient conditions for linear separability

of A and B is that O(A,B) > 0 where O(A,B) 1is the solution of the

linear programming problem

0(A,B) = maxc’a,s{u - B| subject to the

constraints (4), (5), and (7)}.

Necessary and sufficient conditions for linear insepa-

Corollary 1.
rability of A and B is that ©O(A,B) = 0.

(It should be remarked that the author suggests two possible approaches

in case A and B are linearly inseparable.
(1)A technique of eliminating points of A or points of B so
that those points remaining are linearly separable.

(ii)A technique which uses a finite number of planes to separate

A and B.)

Mangasarian then invokes the duality principle of linear programming
[8; p. 71-74] to obtain the analogues of theorem 1 and corollary 1. He
uses the latter analogue to obtain the following condition, which is simi-

lar to a condition of Highleyman [12] and Nilsson [22]. It is an immediate

way of determining linear inseparability, according to Mangasarian.

Theorem 3. (Dual Inseparability Criterion). Necessary and sufficient

conditions in order that the sets of patterns A and B be linearly in-

separable is that the system



A'u - B'v =0
e'u=1

'v =1

u==0

vz0

has a solution, where u and v are m- and k-dimensional column vectors

and the prime denotes transpose. (e and lh are as defined previously.)

Although the author does not present any computational results for
his method, he does make comments regérding its usefulness. He says that
the most widely used method for nonparametric pattern separation is
Rosenblatt's error correction procedure [26], [27] for linear separation
or a modification of it. [10],[21]. This method is based on a very simple
iterative procedure. One advantage of this method over his is its
simplicity. Its main disadvantage seems to be its inability to determine
inseparability of pattern sets when it occurs. This is a consequence of
the fact that the error correction procedure converges only when the pattern
sets are separable, a fact which is not known a priori. Since it is possible
to construct some simple examples for which the error correction procedure
converges very slowly, the problem of distinquishing between slow convergence
and nonconvergence may be a difficult one. Another advantage of his tech-
nique, Mangasarian says, is that it can readily be extended to separate

two sets by more than one plane or surface.



2. Pattern separation by convex programming,

The basic problem considered in this paper by J. B. Rosen is the same
as that of section 1. Héwever, the approach to the problem is different
and perhaps more complicated. Computational results are included; some-
thing lacking in Mangasarian's paper.

We summarize the techniques presented in the paper. Suppose that
Al"

n ,
E into regions such that each region contains at most one of the Ai'

..,Ak are sets of patterns (point sets) in EY. We wish to partition

The author considers two techniques.
(1)Given two pattern sets A1 and A2, the author shows that in

order that Al and A2 be linearly separable it is necessary and suffi-
cient that a certain convex quadratic programming problem be solvable.
Moreover, if Al and A2 are linearly separable, then the author deter-

mines the distance between Al and A2 and constructs the unique hyper-
plane which determines this distance. Extensions to k pattern sets are
given.

(ii)The second technique or problem which the author considers is
that of enclosing one pattern set in a "minimum" ellipsoid. Rosen defines
what he means by "minimum" and shows that such an ellipsoid is unique.

In the last section of his paper, Rosen gives computational results

achieved on certain problems.

The theoretical details of Rosen's paper are somewhat more complicated

than that of section 1. We summarize these details here, again omitting
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proofs as in section 1.

For linear separability, the ideas are similar to those of Mangasarian,
except that Rosen uses convex programming rather than linear programming
to determine linear separébility.

By a convex programming problem, Rosen means the minimization of a

convex function subject to linear constraints. Given two point sets

P and P

1 gs We say P, and P, are linearly separable if and only if

1 2

there exists a hyperplane (plane in the terminology of section 1)

H=H(z,0) = {p € E" lp'z = o} such that Pl and P2 lie on opposite

. . . n .
sides of H, where 2z 1is an n-dimensional column vector in E , a is

1

a real number, and denotes transpose. Through a series of substitutions

and generation of equivalent problems, the author proves the following

theorem.

Theorem. Pl and P2 are linearly separable if and only if the con-

vex quadratic programming problem

. 2
g = mg;n {1/4. Z;l=l YilQ]'_Y 2 el; —Q'Zy 2 ez}

has a solution. If Pl and P2 are linearly separable, then the dis-

X
0
Bo

achieves the minimum O. The separating hyperplane is given by H(x0,80)=

tance § between them is & = 1/¥0, and a unique vector Yo = )
n _
Although it is somewhat detailed, an explanation of the notation is in
order.
Let P be a point set; that is, a set of patterns. We think of

1

each pattern as being a point ﬁlj in En, where



1j

23

P1j

a
nj

Suppose that Pl has m, elements and write Pl as the matrix whose
th

j column is plj' Thus P, is an n X m, matrix. Similarly for P2,

1 1

another point set. The distance 6 between Pl and P2 is Euclidean

distance; Rosen claims that this distance will be the maximum value of Y

(real number) for which a hyperplane H(z,a) exists such that

\J
Pjz 2 (o + 1/2v) e,
' -
Pzz < (o -1/2v) e,
HZH‘= 1 (Euclidean norm)

where ' denotes transpose and ey and e, are m- and mz—dimensional
column vectors of ones.

Letting z = x/||x||;0 = B/Hﬂl; Y = 2/||x||, and arriving at an equivalent

problem to his original one, the author makes the following definitions:

«
Il

X
(g)

Kal
]

14 ( —l) for each j = 1,...,m

P,.
( Ei) for each j = 1,...,m

923 2
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where m, is the number of elements p2j in PZ' (Note that > 4

and q2j are (n+l)-dimensional vectors.)

Finally, define Ql and Q2 to be the (n+1)><ml and (n+l)><m2
matrices (respectively), whose jth columns are qu and q2j (respec-
tively). Thus, we have the notation of the theorem.

Rosen then shows that if Pl and P2 are "linearly separable, then

basic subsets Pl E_Pl, PZ-S P2 can be chosen such that: (i)Pl and P2

determine the the same separating hyperplane as P, and P2; (ii) the

1
distance between §i and ?é is the same as the distance between P1
and P2; and (iii) ?i and ?é have the property that removing one or
more points from either ?i or fé results in an increase in the dis-

tance between them. The author then generalizes his results to the
case of k pattern sets, k a positive integer.

For the ellipsoidal separation (nonlinear separation), Rosen wishes
to enclose a pattern set in a unique ellipsoid of "minimum" size. He
achieves this by minimizing the sum of the squares of the ellipsoid's
semi-axes. This is shown to be equivalent to the problem of minimizing
the trace of a certain set of matrices. The author proves that such an
ellipsoid is unique. Rosen then describes an iterative technique of
determining this "miﬁimalﬁ ellipsoid. The procedure is to alternatively
solve two convex programming problems, each of which involves the minimi-
zatlon of quadratic forms. Finally, Rosen shows that this procedure
converges to the unique solution.

The author is quite detailed with regard to computational results

of his techniques and in suggestions for overcoming computational problems.
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We will not detail these here. Computational techniques and the corre-
sponding computer programs have been developed for each of the two
methods presented by Rosen ([9], [25], [6], [23]), and computational
results for particular pfoblems are given. (see [6], [23]). Computer
times seem quite good, although the size of the problems Rosen considers
in his compugational work may account for this. Finally, Rosen makes no

comparison of his techniques with others.

3. Pattern classifier design by linear programming.

'This paper by F. W. Smith is probébly the most detailed of the three
papers reviewed, as far as examples and computational techniques and re-
sults are concerned. Smith considers the same problem as that of the
previous two sections. However, his work is almost exclusively for the
linearly separable case; only brief mention is made that his techniques
extend to the linearly inseparable case.

Smith's approach to the problem differs from that of the previous
two in that he attempts to determine the separating hyperplane subject
to the minimization of the mean error function. [15], [16]. Two types

of the fixed-increment adaptive method; namely, the steepest descent

design method [15], and the one-at-a-time design method [15], [17],

[22] are considered. Both of these methods are iterative type techniques.
The author formulates this approach (that is, minimizing the mean error
function) as a linear programming problem and then compares this formu-
lation with the two previously mentioned fixed-increment adaptive

methods. Computational results, suggestions for handling special types of
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problems; suggestions for overcoming computational difficulties, etc. abound
in the paper.

We briefly summarize the author's approach. to the problem. Smith's
formulation of the problem as a linear programming problem and his many
comments and suggestions for special cases made in doing this are too

detailed for the purposes of this report.

Let A =.{Yi,...,YK};'B = {Zl,...,ZM} be two sets of patterns. As
in sections 1 and 2, each Y, and Z, is considered as a point of E".

i 3

We wish to find a ﬁ’é E" and a real number d such that

a)

Y, W>d and -2Z, W=4d ¥k

3

T
k
(Smith calls d a scale factor [17)], which for the purposes 6f this paper

was taken to be 1.)

The mean error function, h, is defined by

K

k=1Tet L

- _ K
h=2 X

n +

M
kel Tk

where hk is the pattern error function associated with

Yk’ if k=1,...,K
and associated with

Z, _ g» if k= KHl,... KN,

and T is a weighting coefficient for each k.

For the fixed-increment adapter method hk is defined by:
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T . T,
h, = -(CW - d) 1f X W <d
=0 if XEW?.d
n

where W is an n-dimensional column vector of E and

%

XK+i —Z1 for i =1,...,M

Yi for i = 1,...,K

Note that if W ¢ E* and if W is such that X W > d for each k, then
hk = 0 for each k. Thus, h =0, and W satisfies (1).

Each of the two techniques with. which Smith. compares his method
are initiated by choosing an arbitrary (but Smith suggests it can be
well chosen) W. One then proceeds by incrementing the initial W,
subject to the criteria of minimizing h. The main content of Smith's
paper is the detailing of the formulation as a linear programming pro-
blem the problem of determining W subject to the criteria of minimizing
h.

The author's primary comments on computational results are comparisons
of his linear programming technique with that of the steepest descent and
one-at-a-time design methods. He is quite detailed on this, giving:
conjectures for when one method is better than another; calculations for
the computer time required for a given, but arbitrary problem; suggestions
for methods of handling certain types of problems, as well as computational
results with time and accuracy comparisons for the three techniques.

The author also gives suggestions on how to eliminate some of the

elements in the pattern sets in order to reduce computer time, but still
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arrive at the same, or nearly the same, W as one gets using all the
patterns.

Finally, the author comments that he thinks his techniques should
extend to the nonseparable case; however, all detailed computational

results are for the linearly separable case.

While it is not our purpose to judge the merits of these linear
programming type approaches with regard to the pattern recognition pro-
blems of MSC and NASA, some comments can be made.

While a nonstatistical approach to the pattern recognition problems
of MSC and NASA is somewhat questionable, there may still be some partial
utilization of such an approach.

An application of theorem 3 of section 1 might be useful for consider-
ing pattern sets that one suspects to be linearly separable4 Mangasarian
claims this to be an immediate way of determining linear separability.
The techniques suggested in section 2 have the advantage over those of
section 1 in that commuter programs have already been developed for them.
The idea of enclosing a ﬁattern set in a minimal ellipsoid is applicable
in the linear inseparable case and perhaps would have application in,
at least, special problems. The approach suggested in section 3 is dif-
ferent than those of sections lAand 2, and appears to perhaps have more
potential than the first two. Computer programs have also been developed

for this technique.
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FOOTNOTES
;Mangasarian, 0. L. "Linear and nonlinear separation of patterns by
linear programming', Operations Research Soc. of America Journal, 13,
No. 3, 444-452 (1965).
2Rosen, J. B., "Pattern separation by convex programming', Journal
of Math. Analysis and Applications, 10, 123-134 (1965).
3

Smith, F. W., "Pattern classifier design by linear programming",

IEEE Trans. On Computers, vol.C-17, No. 4, 367-372 (1968).
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INTRODUCTION

A cluster seeking technique is a method of dividing
data into subsets, called clusters. These clusters contain
data points that are "similar” to each other and "different"
from the elements of other clusters., The methods for
determining the clusters differ in a variety of ways,

Basically these methods all stem from the inadequacy
of the most commonly used statistiecs (the overall mean,
covariance, and correlation) when the distribution is
non=Gaussian. It is relatively easy to construct data
sets which, when plotted, appear quite different but whose
covariance matrices, for example, are identical [3).*
Moreover, the classes into which it is desired to sort
data are usually those established by human perception,
and it has been argued that the usual statistical descriptors

have little perceptual significance [?0].

Notations
In the sequel, X will denote the j=th data vector or
pattern, N will be the total number of patterns. If the

patterns are members of a finite dimensional vector space,

*  Bracketed references refer to entries in the
bibliography.
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D will denote the dimension and Xj(i) will denote the
i-th component of Xj as a member of ED. Sij will denote
the similarity coefficient between the i-th and j-th
patterns, and dij will denote the "distance" (not necessarily
a metric) between them.

Since the measure of similarity is crucial to all
the cluster seeking techniques, some of the various measures
that have been used are summarized in Table 1 [ﬁ.ij.
Some of the algorithms may be applied with any of the measures,
while others are more specific,

The various cluster seeking techniques have been broken
down into seven categoriest [31

1.Probabilistic

2,Signal Detection

3.Clustering

4,Clumping

S5.Eigenvalue

6.Minimal mode seeking

7.Miscellaneous

In the following sections of this report, each category
will be described and one or more algorithms of that type

will be presented.



TABLE 1
MEASURES OF SIMILARITY

Dot Products Sy5 = xlexd
Similarity Ratios Ry = xtexd
Weighted Euclidean - D 1yoyd 2
Distance s dy 5 £ w (X7 (k)=-x"(k))
Unweighted Euclidean = D (eiipyiyd 2
Distances dj 5 £§1(x (k)=-Xx7(x))
JQI Distance: 4. . = £|Xi(k)-xj(k)\
LIS
Component Correlation: - D - Vxiloeyoyd .
S1j = %, éfkl[l bt ()-x3 ()]
G- v )-xd ] -
[iaz\xi(l)-xj(l)f\
where re is correlation
coefficient between components k & 1.
Normalized Correlation: Sij = Xi'Xj/ (xi'xi)(xj'xj)
Coefficient of Correlations S;: = 2 (Xi(k)-uk)(xj(k)-uk)
k=1

J
\]k§_1(x1<k>-uk)5k2_1(xJuc)-uk)Z

where uy is the overall mean of

the k-th component.
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TABLE 1 (Continued)

Coefficients of Associations For binary data, n will denote
number of, a capital subscript denotes °1°' and a small

subscript denotes °'0°,

1. nJK/(nJK+an+an)
2, (nJK+njk)/D
3. nJK/D
L, 2nJK/(2nJK+an+an)
5. z(nJK+njk)/(2(nJK+njk)+an+an)
6. nJK/(nJK+2(an+an))
7e (nJK+njk)/(nJK+njk+2(an+an))
8. nJK/(nJ+nK-2nJK)
9.(nJK+njk)/(an+an)
10. %((nJK/nJ)+(nJK/nK)+(njk/nj)ﬂbjk/nk))
11, #((ng/nz)+(ngp/me))
12, nJK/ n Ny
13« ngyng/\Rgnny
14, (nJK+njk-an-an)/b
15, (nggnge=npng)/(ngnge+ngenge)
16. (nJK“jk‘an"Jk)/("Jnxnjnk)



PROBABILISTIC

Probabilistic cluster seeking techniques are primarily
analytical studies. The probability of occurance of a pattern
is estimated and then a weighted combination of patterns
is used to estimate probability distributions.
The following algorithm developed by Fralick is typical [22]3
Suppose there are M possible classes WiseasoWys and
associated with each is a conditional probability density
P(K/Wi) which is known except for a single parameter Gi.
~ that is, assume p(X/wi.Gi) is known, Assume also that the
a priori probabilities of occurence p(wi) are known, that

i

the a priori distribution of @7, po(Oi) is known, and that

i

8" can assume only a finite number of values. Then the

desired density can be determined as follows:
Py (Xye4q/w3) =5P(xk+1/wi'°l)Pk‘°1) a0t
where p(xk/wi.ei)p(wi) * 5 1pk-1(xk/"‘;j)p(“j)

i i
p, (87) = p, . (87)s
k k-1 Zpk-l(xk/wj)p(“'j)

For the case of an unknown signal in noise, he proves

that pk(xk+1/wi)~>p(x/wi). However, the amount of computation
and storage required is considerable, particularly for multi-
variate problems, Moreover, in the case where the class

a priori probabilities are all the same., the initial selection
of the probability distributions for the various classes

must be different for "learning” to occur [?f},
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Other probabilistic techniques are discussed in 67.45,1 61



SIGNAL DETECTION TECHNIQUES

Signal detection techniques grew out of a desire to
detect unknown signals in noise, The final decision is
based on correlation detection to estimate parameters of
a matched filter,

The following algorithm of Jakowatz is typical [§§31

A sample waveform M is stored in the memory of a
correlation detection device, When the dot product
b(t) = M(t)eX(t) of the incoming wave X exceeds a threshold
bp(t), the waveform in memory is modified as follows:

Let t; be the time at which memory is changed, Then
M(t) =(gM(t,_,)e~%8

capacitor ratio, 4 is a time constant associated with the

+X(ti))/(g+1) where g depends on a

memory device, and s = t-t; , for t;2t)t; ;.
The threshold grows with successful detection and decays
with failure to detect.

Other signal detection techniques may be found in
{?5,54,5i]. All of these are primarily used for signal
detection and as presently conceived their utility outside
this area seems limited., One severe problem is the use
of energy detection to start the process going., There is
a definite thresholding effect for weak signals, and
apparently a minimal adaptable signal, which may be

a function of signal waveform,
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CLUSTERING TECHNIQUES

Clustering techniques can be characterized by sorting
of patterns using multiple cluster points., Tentative
assignments are made to clusters and these assignments
improved until the centroid of the cluster adequately
describes the data. Since these techniques vary in a
number of ways, several algorithms will be presented here,

Okajima proposed the following algorithm for use with
electrocardiagram data [ﬁj\z
Step Number Step Description
1 The data vectors are arranged in random

order and a bank of memory filters gm} is
initialized to zero,

2 The incoming data vector X is selected
and weighted (if desired).

3 The correlation X°M/A(X°X)(M°M)) with
each used memory filter is computed and
a memory filter M is selected which gives
the maximum correlation.

L If this maximum correlation exceeds a
predetermined threshold, the filter is
modified by the rule: If Xi is the i-th
pattern entering the same filter My, then

M= (1/1)(X1+X2+...+Xi)-
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5 If not, the data vector goes into a new
filter.
6 Repeat 1-5 until all data has been examined,

The algorithm depends on the threshold, the weighting,
and the order in which the pattern vectors are selected.
Algorithms very similar to this have recently been propesed
using different measures of similarity [50.48.5§). These
"one~-pass" techniques are definitely timeesavers [35].

Sebestyen is concerned with computing a probability
distribution based on the sample data [ﬁ9.56]. A pattern
is selected and compared with existing cluster centers.

The measure of similarity is a weighted Euclidean distance
with the weight depending on both the component and the
cluster. The minimum distance of the pattern from a

cluster point is compared with two thresholds. If the
smaller threshold is not exceeded the pattern is added

to that cluster and a new mean for the cluster is computed.
If the larger threshold is exceeded, a new cluster is formed
using that pattern as its centroid. If the pattern distance
is between the two thresholds, the pattern is temporarily
rejected and will be considered later on in the process.
This algorithm is computationally complex, and very sensitive
to the weight factors,

The ISODATA program of Ball and Hall [3,6,§X has
recently undergone comprehensive study [?7,31.32.35].
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The version presented here is the "final" version

recommended in E}E}.

The ISODATA Algorithm

0., Initialize

Loop 1, CLASSify and calculate STATistics

2. Change cluster structure:

2,1 DELETE

2,2 If iteration is a split (S) iteration, SPLIT, and

go to Step 33 otherwise continue,

2,3 COMBINE

3. If iteration is.the final one in the SC sequence, STOP;

otherwise, go to Loop for the next iteration,

Before the subroutines mentioned above can be explained,

some notation must be developed:

SGMAX

DLIM

NCLUSTR
NDATA(I)

NMIN

NTOTAL

Maximum standard deviation allowed in a
cluster, larger than which the cluster is
split.

Minimum distance between two clusters, less
than which they are combined.

Number of clusters at any particular iteration.
Number of data points in the i=th cluster at
any particular iteration,

Minimum number of points in a legitimate
cluster,

Total number of data points in the input,

C~
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SC sequence Split(S) and combine(C) sequence.,
uji. sji Mean and standard deviation of the i=th

cluster along the j=-th coordinate,

Initializes Input values for SGMAX, DLIM, NMIN, SC sequence,

and a gtarting procedure. The default option
sets SGMAX = 4,5, DLIM = 3,2, and NMIN = 20,
If no starting procedure is specified, the

SC sequence = SSSCSCSCSCSCCC, NCLUSTR = 1,
and u;' = 0, § = 1,...,D.

CLASS and STATs From the previous iteration there are left

NCLUSTR cluster centers. The subroutine
reclassifies the data points to their
respective closest reference points, using
'Ql distance. The means and standard
deviations of these new clusters are itera-
tively accumulated at the same time the
points are assigned,

DELETEs This subroutine deletes the existence of a cluster
when it contains less than a prespecified minimum
number of points (NMIN),

SPLITs This subroutine splits a cluster along the j=th

coordinate by creating two clusters with centers
k!
J

(1)Its standard deviation along the j-th coordinate

at (ullguzl.ooo’u ;"' sjl.oooouDl)T if

is larger than SGMAX; and if (ii)It has more than



12

2(NMIN+1) data points.
COMBINEs This subroutine combines two clusters if the

distance between thems

a(uP.ud) = D Pe 9)(y.Puy.1)?
(u¥,u?) j;él(l/sJ 8 )(uJ ug )

is less than DLIM,

Although reasons are given in{?h} for the use of three
different distance measures in the same program (computational
gimplicity), the logic behind mixing;Ql for distance from
data to cluster, 92 for standard deviation of cluster, and
a welghted QZ for distance between clusters, is difficult
4o follow. The user specified thresholds have a great
influence on the clusters formed, although the iterative

nature of the algorithm somewhat ameliorates this,
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CLUMPING

In these techniques a single pair of patterns is selected
as a nucleus for a clump of patterns., Other patterns are
assigned to this clump on the basis of the similarity measure.
Genrally speaking, these techniques require the calculation
of all péirwise similarity coefficients, forming a similarity
matrix, and some of these must be recalculated after each
new combination,

Several "clustering by linkage" techniques have been
suggested 155.52.551. All involve first calculating a
similarity matrix. The nucleus of a cluster is established
using those two patterns with the highest similarity
coefficient, Then patterns are added to this nucleus one
at a time. Single linkage calls for admitting a pattern
if its similarity coefficient with any one member of the
cluster exceeds a threshold., Iterative improvement is
provided by recalculating the mean similarity both within
groups and between groups. Complete linkage requires that
a pattern joining a cluster mu8t have a value above the
threshold with all members of the cluster, If there is a
choice, it should be made first to give the larger group,
second to have fewest residual patterns, and third to give
the highest average similarity coefficient., After each
iteration a new similarity matrix is calculated using the

means of the clusters, Clustering by average linkage



71k

bases admission on the average similarity of that pattern to
all members of the cluster. If an admission would lower this
average similarity by more than .03 (an empirically determined
value) the pattern should not be admitted,

Rogers and Tanimoto use a function related to information
theoretic entropy as a criterion for clustering binary

patterns(:hél. Their algorithm is as follows:

Step Number Step Description
= yleyd
1 Compute Rij X=°X
N
H., = (=log,S.:)
i jél 231